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Abstract

A new fractional-step method is proposed for the numerical solution of high speed reacting flows, where the chemical
time scales are often much smaller than the fluid dynamical time scales. When the problem is stiff, because of insufficient
spatial/temporal resolution, a well-known spurious numerical phenomenon occurs in standard finite volume schemes: the
incorrect calculation of the speed of propagation of discontinuities. The new method is first illustrated considering a one-
dimensional scalar hyperbolic advection/reaction equation with stiff source term, which may be considered as a model
problem to under-resolved detonations. During the reaction step, the proposed scheme replaces the cell average represen-
tation with a two-value reconstruction, which allows us to locate the discontinuity position inside the cell during the com-
putation of the source term. This results in the correct propagation of discontinuities even in the stiff case. The method is
proved to be second-order accurate for smooth solutions of scalar equations and is applied successfully to the solution of
the one-dimensional reactive Euler equations for Chapman–Jouguet detonations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The appropriate modelling of high speed reacting flows needs to account for non-equilibrium gasdynamics: in
the inviscid case this leads to a (possibly stiff) non-homogeneous system of hyperbolic equations – the so-called
reactive Euler equations – where the source terms account for the modifications to the mixture composition due
to chemical reactions. A wide range of kinetic reaction rates may be present, and the chemical time-scales are
often orders of magnitude smaller than the typical relaxation time of fluid dynamics, leading to the stiffness
of the problem.

Even if unconditional stability can be obtained with an operator splitting approach and an implicit treat-
ment of the reactive term, spurious numerical phenomena may occur when dealing with discontinuous solu-
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tions: shock-capturing numerical methods may possibly predict wrong propagation speeds of the discontinu-
ities if the source term is not resolved with appropriate spatial/temporal accuracy.

This numerical phenomenon was first observed by Colella et al. [1] who considered both the reactive Euler
equations and a simplified 2� 2 system obtained by coupling the inviscid Burgers equation with a single
advection/reaction one. They derived analytically the conditions at which these spurious solutions may be pro-
duced, but failed to give an explanation for this numerical artifact. Starting from the slightly different context
of hyperbolic equation systems with stiff relaxation, Pember [2] put in evidence the same behavior, observed
also by Ben-Artzi when numerically integrating the reactive Euler equations by solving a generalized Riemann
problem [3]. LeVeque and Yee [4] showed that a similar spurious propagation phenomenon can be observed
even with scalar equations, by properly defining a model problem with a stiff source term. The analysis of such
a simple scalar problem allowed LeVeque and Yee to argue that the propagation error is due to the introduc-
tion of some numerical viscosity in the solution of the convective terms, which smears the discontinuity front
and produces fictitious non-equilibrium values that, in turn, erroneously activate the source term. A slightly
different scalar problem featuring the same behavior was considered in [5].

The correct propagation speed of the reactive front may be restored by using a front-tracking approach,
like the ghost fluid/level set method of Nguyen et al. [6], by resorting to a local grid/time step refinement
[7,8], that eliminates the local stiffness of the problem, or by a combination of both [9]. However, a very thin
resolution is what one wants to avoid if only the general behavior of the fluid dynamical system and not the
detailed investigation of the chemical phenomena is to be reproduced. Chorin’s random choice scheme [10,11]
has been successfully used in [1,12] for the solution of under-resolved detonation waves: its good performance
is due to the lack of numerical diffusion. The method is based on the exact solution of Riemann problems at
randomly chosen locations within the computational cells and does not need to introduce any smearing effect
near discontinuities, hence it can correctly handle a stiff advection/reaction equation. However, the introduc-
tion of some numerical viscosity is an essential feature of many of the presently used shock-capturing schemes.
Therefore, several modifications to shock-capturing methods have been presented in the literature, in order to
correctly reproduce discontinuous solutions even in the under-resolved case. In [13], Engquist and Sjogreen
proposed a rather ad hoc temperature extrapolation method, which uses an extrapolated temperature value
from outside the shock profile to activate the chemical source term. Different methods based on a modification
of the ignition temperature derived from a more sound physical or analytical basis are those of Ton [14] and
Berkenbosch [15]. Helzel et al. [16] presented a modified fractional step method for the solution of detonation
waves in which the exact solution of Riemann problems is used to define the reactive portion of the cell, so as
to limit the influence of the reactive term across discontinuities. The method is extended in two dimensions by
accounting for transverse propagation. It is a very elegant approach to cure the very cause of the problem but
it may be applied only in conjunction with an exact Riemann solver for the conservation equations. Bao and
Jin [17,18] achieved correct average propagation speed of the discontinuity by adopting a random projection
method, which consists of replacing the ignition temperature (or the unstable equilibrium value of the source
term in the scalar case) by a uniformly distributed random variable. This method has however two drawbacks:
(i) it assumes a priori a stiff source, which prevents its use for non-stiff problems and (ii) for multidimensional
flows it requires a rather complex bookkeeping to apply locally the random projection. Recently, Kurganov
[19] has proposed a very simple fix, termed Accurate Deterministic Projection (ADP) method, for both scalar
equations and reactive Euler equations, that decouples the flow solution from that of the scalar variables dom-
inated by the source terms. Again the assumption of an uniformly stiff behavior of the source-dominated equa-
tion prevents using the method in a more general context of stiff/non-stiff problems.

In the present work, we will first consider a simple linear scalar advection/reaction equation, with suitably
selected source term and initial conditions, to devise a fractional-step method that can correctly reproduce the
speed of the discontinuity in under-resolved calculations for stiff source conditions. The scalar model problem,
although insufficient to reproduce the physics of rapid combustion, does feature the same numerical difficulties
observed in reacting flow problems and allows to easily understand the very nature of them [4]. For this reason
it has been considered as a first step in the developments of numerical methods for this class of problems also
in [7,17,19].

The proposed fractional-step algorithm is termed the MinMax scheme, because it is based on a two-value
variable reconstruction within each cell, where appropriate maximum and minimum values of the unknown
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are considered. The resulting scheme is very general; it may be applied with no difficulties to both stiff and non-
stiff problems and will be then extended to deal with the reactive Euler equations.

The paper is organized as follows. In Section 2 we define the selected one-dimensional, scalar, discontinu-
ous model problem and describe a standard, first-order fractional-step/shock-capturing finite volume numer-
ical method to solve it. The spurious solutions obtained for the stiff source conditions will be briefly discussed
following the arguments of [4]. Section 3 presents the proposed scheme for the scalar case, starting from the
variable reconstruction, followed by the treatment of the reaction and advection operators. The extrapolation
procedure needed after the advection step is considered in detail, in order to guarantee that the resulting
scheme preserves the accuracy of a standard finite volume method for the non-stiff case and correctly repro-
duces the propagation speed of a discontinuity for the stiff, under-resolved case. The section ends considering
some results for stiff and non-stiff scalar test cases. Additional scalar model problems are presented in Section
4 to verify that the results obtained with a standard second-order finite volume method for a smooth problem
are reproduced with the second-order version of the MinMax scheme. The latter is extended to the reactive
Euler equations in Section 5, while some conclusions are drawn in Section 6.

2. The scalar problem

We consider the following simple model problem, first proposed in [4] and adopted, in a slightly modified
nonlinear form, also in [17,19]:
ou
ot
þ a

ou
ox
¼ SðuÞ ¼ mð1� uÞðu� bÞu ð1Þ
over ðx; tÞ 2 ð�1;þ1Þ � ½0;þ1Þ, with initial conditions:
uðx; 0Þ ¼
1; if x 6 xd ;

0; if x > xd ;

�
ð2Þ
where xd is the position of the initial discontinuity. In Eq. (1), m is a positive parameter that allows us to vary
the stiffness of the problem and b is a second parameter ð0 < b < 1Þ. Eq. (1) is an advection equation with
constant propagation speed a and with a nonlinear source term SðuÞ that becomes stiff for large m. The intro-
duction of the more complex advection equation with variable propagation speed, as proposed in [7,17,19],
does not modify the mechanism of generation of spurious wave speeds here investigated. Given the selected
initial condition, it is easy to verify that the exact solution is
uðx; tÞ ¼
1; if x 6 xd þ at;

0; if x > xd þ at;

�
ð3Þ
i.e. it is identical to the solution of the same equation without the source term and with the same initial data
(2). The particular polynomial choice of the source term SðuÞ allows for a simple interpretation of the solution.
It may be noticed that the function SðuÞ defines two stable equilibrium points, u ¼ 1 and u ¼ 0, and one unsta-
ble equilibrium point at u ¼ b. Therefore, the solution uðx; tÞ over the characteristic lines x� at ¼ const will
tend to 1 or 0 depending on the initial conditions.

The problem (1),(2) here considered is very peculiar in both the form of the source term and the choice of
the initial conditions, so that it cannot be considered a general example of an advection/reaction equation. It
has been proposed by LeVeque and Yee [4] because it forces a standard finite volume solver to face the same
difficulties encountered by the reactive Euler equations, as will be shown in this section. Some additional scalar
problems will be considered later on in the paper.

To numerically solve problem (1)-(2), it is usual to adopt the so-called fractional-step approach. Consider-
ing a uniform space/time discretization like
xi ¼ ih i ¼ 0; 1; 2; 3; . . .

tn ¼ nk n ¼ 0; 1; 2; 3; . . .
ð4Þ
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with h ¼ Dx and k ¼ Dt, we approximate the exact solution at time tnþ1 in terms of the solution uðx; tnÞ calcu-
lated at the last time level with
uðx; tnþ1Þ � RnAnuðx; tnÞ: ð5Þ

The operator An is defined as
Anuðx; tnÞ ¼ u�ðx; tnþ1Þ; ð6Þ

where u�ðx; tnþ1Þ is the solution of the advection part of the problem on the time interval, that is
ou�

ot þ a ou�

ox ¼ 0; tn 6 t 6 tnþ1;

u�ðx; tnÞ ¼ ~unðxÞ;

�
ð7Þ
where ~unðxÞ is the initial condition that is inferred from some discrete representation of the solution at time tn,
for example a piecewise constant approximation of uðx; tnÞ.

In a completely analogous way the operator Rn is defined as
Rnu�ðx; tnþ1Þ ¼ u��ðx; tnþ1Þ; ð8Þ

where u��ðx; tnþ1Þ stands for the solution on a time step of the reaction problem:
du��

dt ¼ Sðu��Þ; tn 6 t 6 tnþ1;

u��ðx; tnÞ ¼ ~u�ðxÞ;

�
ð9Þ
where ~u�ðxÞ is the initial condition that is provided by a suitable approximation of u�ðx; tnþ1Þ ¼ Anuðx; tnÞ.
While the fractional step approach (5) is known to be at best first-order accurate, second-order accuracy

can be obtained using a three step procedure, the so-called Strang-splitting [20]. For sake of simplicity we
restrict our attention here to first-order approximations, but the algorithm presented is proved to work also
with higher order methods by immediate extension, as illustrated by the examples of second-order results
given in Section 4; see also [21].

In this section, we solve the problem approaching both the reaction and advection operators by a standard
finite volume method. We use ‘finite volume’ to describe any numerical method which is based on the partition
of the space domain X into volumes Xi such that Xi \ Xj ¼ ; and

S
iXi ¼ X. In this framework the numerical

solution Un
i at time tn is considered to be an approximation of the average value of uðx; tÞ on volume Xi:
U n
i �

1

h

Z xiþ1=2

xi�1=2

uðx; tnÞdx; ð10Þ
where xi�1=2 and xiþ1=2 are the coordinates of the cell boundaries.
To discretize the advection operator (6) we start by setting the initial condition in problem (7) ~unðxÞ as a

piecewise constant function, consistent with the vector of approximations U n (see Fig. 1b):
~unðxÞ ¼ U n
i for xi�1=2 6 x < xiþ1=2:
Starting from these initial data, the exact solution of the linear advection equation in (7) over the time interval
k (Fig. 1c) is
u�ðx; tnþ1Þ ¼ ~unðx� akÞ:
Exact Solution Piecewise constant
representation

Solution  of the
advective term

New piecewise
constant solution

Fig. 1. Finite volume interpretation of the upwind method.
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The discrete solution U �i is now defined by cell averaging u�ðx; tnþ1Þ (Fig. 1d):
U �i ¼
1

h

Z xiþ1=2

xi�1=2

u�ðx; tnþ1Þdx:
The integral is immediately obtained since u�ðx; tnþ1Þ is piecewise constant. Whenever 0 < ak
h < 1 we obtain
U �i ¼ 1� ak
h

� �
U n

i þ
ak
h

U n
i�1: ð11Þ
It is well known that this method is first-order accurate for smooth solutions, provided 0 < ak
h < 1. Second-or-

der accuracy can be achieved by using a piecewise linear reconstruction for the initial condition ~unðxÞ. It has
been proved [4,21], however, that using higher order methods does not significantly change the behavior of the
solution in the stiff case.

For the reaction operator (8), we still consider a piecewise constant initial condition ~u�ðxÞ in problem (9):
~u�ðxÞ ¼ U �i for xi�1=2 6 x < xiþ1=2:
This leads to the solution of an ordinary differential problem in each cell. Using a linearized implicit Euler
scheme we obtain
Unþ1
i ¼ U �i þ

kSðU �i Þ
1� kS 0ðU �i Þ

;

where S0 is the Jacobian of the source term.
Summarizing, the numerical solution of Eq. (1) is calculated by the following standard finite volume

algorithm:
U �i ¼ U n
i �

ak
h

Un
i � U n

i�1

� �
½� Ak~unðxÞ�;

U nþ1
i ¼ U �i þ

kSðU �i Þ
1� kS0ðU �i Þ

½� Rk~u�ðxÞ�:
ð12Þ
From the expression of the source term in (1), it can be seen that the significant parameter to characterize the
stiffness of the problem is km.

The results computed with a ¼ 1 (Fig. 2) show that in the non-stiff case (i.e. small values of km) the problem
is correctly solved, while in the stiff case the numerical solution overshoots and predicts a completely wrong
propagation speed of the discontinuity. Similar results are obtained in [4] where different solvers are analyzed
(see also [21]).

A detailed analysis of this wrong propagation phenomenon is reported in [4]; here we only recall some basic
concepts that will be useful later. To pinpoint the source of the wrong propagation speed it is convenient to
analyze with the help of Fig. 3 the first time step of algorithm (12).

� The numerical method initially applies the advection operator only. Starting from a discontinuous initial
condition an intermediate state is introduced (see Fig. 3b). Such an intermediate state does not exist in
the exact solution of the differential problem (which consists of a step between u ¼ 1 and u ¼ 0), but can
anyhow be considered the most correct approximation to the differential problem as it respects the cell aver-
age of the exact solution.
� Although the intermediate state is a correct approximation for the advection problem, it generates a prop-

agation error when the reaction solver is activated (see Fig. 3c). The intermediate state is a non-equilibrium
condition for the source term and will hence be changed during the reaction step. If the problem is stiff (i.e.
the relaxation time for the reaction problem is short compared to the time step used), then the intermediate
state will be brought to the nearest stability condition, in the example of Fig. 3 to u ¼ 1. This is why at the
end of the integration step the discontinuity has moved a whole computational cell.

It can hence be inferred that when approaching the advection/reaction problems (1) and (2) with method
(12) the observed wrong propagation speed of the discontinuity in the stiff case is due to the intermediate state
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Fig. 2. Results obtained with the standard fractional step method (12) at t ¼ 0:3 for problem (1)–(2) with a ¼ 1, b ¼ 0:5, in non-stiff
ðkm ¼ 0:15Þ and stiff ðkm ¼ 15Þ cases. h ¼ 0:01, ak=h ¼ 0:75.
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Fig. 3. Evolution of the numerical solution in one time step.
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generated by the advection operator. This intermediate state constitutes a non-equilibrium condition for the
source term and wrongly activates the source itself. This kind of behavior is not due to the particular solver
considered, but it is typical of many finite volume solvers [22]: a conservative shock-capturing method needs to
introduce some intermediate state to represent a discontinuity within a cell, but as soon as a non-equilibrium
value is introduced, the source term mispropagates the discontinuity in attempt to reach an equilibrium
condition.

3. The proposed method

A different treatment of the reaction operator is now introduced. Such a modified approach does not allow
the intermediate condition to react and hence reproduces the correct propagation speed of the discontinuity.

The basic idea of the proposed method is to replace – during the reaction step – the representation of the
unknown based on the cell average U n

i with a more detailed one. We will identify the solution through three
parameters: U n

i and Un
i , which can be considered as an approximation of the maximum and minimum value of

uðx; tÞ in the cell, and Un
i , which still represents the cell average value of the unknown, as defined in (10). This

means that the present method needs three times more computational memory than a standard finite volume
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approach. Nevertheless, it can still be considered more efficient, considering the very fine grid one needs to
employ with the standard approach to correctly capture the shock velocity in the stiff case.

We begin by formalizing the method describing the reconstruction of the unknown inside the cell; then this
reconstruction will be applied to the reaction and advection operators. It should be noted that for clarity of
exposition the fractional-step approach is applied in this section as
uðx; tnþ1Þ � AnRnuðx; tnÞ; ð13Þ
i.e. in a reverse but strictly equivalent order with respect to the previous section. Consequently, the interme-
diate solution u�ðx; tÞ represents hereafter the outcome of the reaction operator.

3.1. Cell reconstruction

We introduce the local coordinate ni for the ith cell:
niðxÞ ¼
x� xi�1=2

xiþ1=2 � xi�1=2

; 0 6 niðxÞ 6 1 ð14Þ
and we define unðniÞ as an approximation of uðx; tÞ in the ith cell at time tn. The function unðniÞ must satisfy the
following two constraints with respect to the triplet Un

i , Un
i and Un

i :

(1) Consistency with the cell average:
Z 1

0

unðniÞdni ¼ Un
i : ð15Þ
(2) unðniÞ can assume only two discrete values, namely Un
i and Un

i :
unðniÞ ¼ Un
i _ unðniÞ ¼ U n

i 8ni 2 ½0; 1�: ð16Þ
The simplest example of unðniÞ satisfying the conditions (15) and (16) is (see Fig. 4a):
unðniÞ ¼
Un

i ; if ni 6 cn
i ;

Un
i ; if ni > cn

i ;

(
ð17Þ
where cn
i is the portion of cell occupied by the value Un

i , which can be determined from the numerical solution
by a straightforward calculation of the average:
cn
i ¼

U n
i � Un

i

U n
i � Un

i

: ð18Þ
We can observe that any two-value, piecewise constant reconstruction within the cell, characterized by the
same value of cn

i , will be equivalent with respect to the reaction operator Rn, which refers to the time-depen-
dent ordinary differential equation in (9). For instance, a reconstruction that adopts the reversed order
(Fig. 4b)
unðniÞ ¼
U n

i ; if ni 6 1� cn
i ;

U n
i ; if ni > 1� cn

i

�
ð19Þ
is strictly equivalent to (17), as far as the reaction operator is concerned.

3.2. Reaction operator

Once the internal structure of the cell has been defined, it is possible to solve the reaction problem (9) in a
consistent way with the two-value representation. Given the initial condition unðnÞ, the solution of the differ-
ential problem (9) can be obtained by a separate integration of the source term in each part of the cell:



Fig. 4. Two-value reconstruction within one cell: (a) Eq. (17) and (b) Eq. (19).
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U �i ¼ RnU n
i ;

U �i ¼ RnU n
i ;

c�i ¼ cn
i ;

ð20Þ
where Rn is defined by the approximate solution of the differential problem (9) over the time step k. The frac-
tion of cell ci occupied by the maximum value stands unchanged after solving the reaction operator. This al-
lows us to compute the new average value after the integration of the source term as
U �i ¼ U �i c
�
i þ U �i ð1� c�i Þ: ð21Þ
Remark 3.1. It can be noticed that the algorithm (20) is independent of the average value U n
i ; this means that,

in presence of a discontinuity, the intermediate average states generated by the solution of the advection
problem will not influence the solution of the reaction operator. This property allows the algorithm (20) to
correctly handle the reaction term even in presence of numerical viscosity, and therefore makes it a suitable
candidate for the formulation of a method for the solution of discontinuous advection–reaction equations
with stiff source term.
3.3. Advection operator

The integration of the advection problem (7) under the assumption of the two-value reconstruction (16) is
not as immediate as for the reaction term. A consistent solution would require the integration of the homo-
geneous hyperbolic problem with a discontinuous initial solution within the cell. However, in the attempt to
obtain a flexible method (i.e. a numerical method that can independently use a variety of solvers for both the
advection and reaction terms) we solve the hyperbolic part of the problem relying only on the average value, as
in a standard finite volume scheme, as
U nþ1
i ¼ AnðU �; iÞ: ð22Þ
Here, with An we intend a generic solver for homogeneous hyperbolic equations, while the notation ðU �; iÞ
means that the solution depends on node i as well as on other points on the computational grid. The algorithm
(22) computes the updated average value but not the entire triplet necessary to identify the MinMax solution.
As a consequence the values Unþ1, U nþ1 must be somehow extrapolated starting from the average value U nþ1.
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This extrapolation clearly introduces an error in the solution. It will be shown however that, under appropri-
ate conditions, the numerical scheme can be second-order accurate.

3.4. Extrapolation of the internal structure of the cell

The core of the MinMax algorithm is the definition of the functions employed to extrapolate the Unþ1 and
U nþ1 values. For the ith cell, we impose these extrapolation functions, hereafter indicated with the notation M

and m, to depend only on the average value U nþ1
i and on a certain number of values of U � and U � in the neigh-

boring cells. We can henceforth write
U nþ1
i ¼ MðU�;Unþ1

i Þ;
U nþ1

i ¼ mðU�;U nþ1
i Þ;

ð23Þ
where U� is a set containing the values of U � and U � in cells i, iþ 1 and i� 1:
U� ¼ fU �i ;U �iþ1;U
�
i�1;U

�
i ;U

�
iþ1;U

�
i�1g: ð24Þ
This choice of U� is justified in the context of explicit methods: the stability constraint imposes that the char-
acteristic lines can only reach the adjacent cells in a single time integration step. This means that the values
U nþ1

i and Unþ1
i must be influenced only by the adjacent cells.

Now that the arguments of the extrapolation functions are properly defined, we ask the function M to sat-
isfy the following two properties:

(1) Convergence order: The function M performs an extrapolation and hence introduces a further approx-
imation on the solution. We wish the introduced error to be sufficiently small to allow second-order
accuracy. It is possible to demonstrate (see Appendix) that if the value Unþ1 uniformly converges to
Unþ1, then a second-order method is obtained. We will hence ask the M function to satisfy:
lim
h!0

maxi U nþ1
i � U nþ1

i

� �
h

< C: ð25Þ
These requirements assure that, if the unknown uðx; tÞ is smooth, the modified method behaves like a
standard finite volume method, and preserves its convergence and accuracy characteristics.

(2) Correct discontinuity propagation: The second property imposes that M must be defined such as to avoid
any spurious propagation phenomena in the stiff case. To grant this we require
Unþ1
i ¼ MðU�;Unþ1

i Þ 2 U�; ð26Þ

that is the function M does not compute a new U value but just ‘‘chooses’’ it from the values available in
U�.

Unlike the convergence condition, we are unable to give a demonstration to prove that (26) can assure
a correct discontinuity propagation. Regardless, a large amount of numerical experiments seems to con-
firm this proposition.

An argument in favour of (26) can be obtained by considering the case in which the right, ur, and left,
ul, values of uðx; tÞ on each side of the discontinuity are equilibrium conditions for the reaction term, like
in problem (1)–(2). Under these conditions we can state that the set U� will assume, close to the discon-
tinuity, only the two values ur, ul:
U� ¼ fur; ulg;

since the discrete reaction operator (20) leaves unaltered the solution, Rnur ¼ ur and Rnul ¼ ul. There-
fore, the extrapolation procedure will select as minimum and maximum values of the unknown again the
ur, ul values, independent of the average intermediate state generated after the advection step, thus
allowing the correct propagation of the discontinuity.

Identical constraints are used to define the m function.
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Remark 3.2. It must be noticed that requirement (26) is somehow opposite to (25): in the presence of a
discontinuity the maximum and minimum values of the approximation are not influenced by the grid size but
only by the strength of the discontinuity. Regardless, we can expect a good choice of M and m to respect both
conditions where uðx; tÞ is smooth but only condition (26) near a discontinuity.

The M function used here is
MðU�; Unþ1
i Þ ¼ minðU 2 U�jU P U nþ1

i Þ; ð27Þ

where U� has been defined in (24) as the set containing the maximum and minimum values of the approxima-
tion in the ith cell and in the neighboring ones. The M function chooses the new value U nþ1

i within U� as the
closest value to U nþ1

i greater than the average value itself.
Analogously we define:
mðU�; U nþ1
i Þ ¼ maxðU 2 U�jU 6 U nþ1

i Þ: ð28Þ

An intuitive representation of the M and m functions is given in Fig. 5.

Remark 3.3. It must be noticed that in definition (27) it is necessary that at least one element of U� be greater
than U nþ1, otherwise the function M will not produce any result. This implies that it is required to solve the
advection problem with a TVD scheme [22]. A non-monotone method could lead to the paradoxical situation
in which
U < U nþ1
i 8U 2 U�:
In this condition the M function loses its meaning because the new maximum introduced by a spurious oscil-
lation of the advection operator does not fit the maximum values obtained during the solution of the reaction
operator. This difficulty is easily solved by including U nþ1

i itself in the set U�.

Remark 3.4. Many schemes proposed in the literature for both the scalar problem and the detonation wave
problem can be considered MinMax methods, in which a different choice for the functions M and m is made.
In these schemes the reconstruction step is not based on properties (25) and (26), but on less speculative and
more physical considerations. For example, for problem (1)–(2), if we take
Unþ1
i ¼ mðU�; U nþ1

i Þ ¼ 0;

Unþ1
i ¼ MðU�; U nþ1

i Þ ¼
Unþ1

i

cR

;

where 0 6 cR 6 1 is evaluated as the fraction of cell occupied by the shock in the solution of a Riemann prob-
lem, we obtain an analogue of the method of Helzel et al. [16] for the scalar equation, while if we set U nþ1

i ¼ 0
and compute U nþ1

i as the outcome of a random projection step [17] we obtain a scheme similar to the Bao–Jin
random projection method.
Fig. 5. An intuitive graphical representation of functions M and m.
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3.5. The MinMax algorithm

It is useful at this point to summarize the structure of the modified fractional-step algorithm based on the
two-value representation. The first-order MinMax algorithm follows four steps at each time integration:

(1) The reaction operator is solved in each computational cell using the procedure (20), as follows
Fig. 6.
h ¼ 0:0
U �i ¼ RnUn
i ;

U �i ¼ RnUn
i ;

c�i ¼ cn
i :
(2) After the reaction step, the cell average is computed using (21), so that a standard finite volume repre-
sentation is obtained, namely
U �i ¼ U �i c
�
i þ U �i ð1� c�i Þ:
(3) This average value is used as the initial condition for the computation of the advection step:
Unþ1
i ¼ AkðU �; iÞ:
(4) Now that the cell average at time tnþ1 is known, the two-value structure of the solution is reconstructed
via the functions M and m as
U nþ1
i ¼ MðU�;Unþ1

i Þ;
U nþ1

i ¼ mðU�;U nþ1
i Þ
and the variable cnþ1
i is updated with (18) as
cnþ1
i ¼ Unþ1

i � U nþ1
i

Unþ1
i � U nþ1

i

:
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Comparison of the standard fractional-step method (12) with the MinMax method, non-stiff case ðkm ¼ 0:15Þ at t ¼ 0:3. b ¼ 0:5,
1, k=h ¼ 0:75.
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3.6. Results

Figs. 6 and 7 present the results obtained with the standard-fractional step method described in Section 2
compared to our modified algorithm for the solution of problem (1)–(2) with a ¼ 1. The two methods are
almost equivalent in the non-stiff case, the MinMax scheme being slightly more dissipative. However, when
the reaction term becomes dominant, only the modified method can correctly reproduce the position of the
discontinuity.

4. Additional model problems

To verify that the MinMax scheme preserves the order of accuracy of a corresponding standard finite vol-
ume method for smooth solutions, we consider in this section two different scalar model problems, namely an
initial value problem (IVP) in which a Gaussian pulse is damped by the source term, and an initial boundary
value problem (IBVP) that allows for a steady-state solution. Both problems consider a scalar advection/reac-
tion equation with linear source term:
ou
ot
þ a

ou
ox
¼ SðuÞ ¼ �mu; ð29Þ
differing in the initial/boundary conditions.
The IVP reads: solve Eq. (29) over ðx; tÞ 2 ð�1;þ1Þ � ½0;þ1Þ, with initial conditions
uðx; 0Þ ¼ u0ðxÞ ¼ exp � x� x0

r

� �2
� �

; ð30Þ
where x0 is the center of the initial pulse. This IVP is selected to examine the behavior of the scheme in com-
puting a smooth, evolving solution. Since the source term is linear, it is easy to integrate the characteristic form
of the equation to obtain the exact solution as
uðx; tÞ ¼ u0ðx� atÞ expð�mtÞ: ð31Þ
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The IBVP reads: solve Eq. (29) over ðx; tÞ 2 ½0;þ1Þ � ½0;þ1Þ, with initial and boundary conditions
F

uðx; 0Þ ¼ 1;

uð0; tÞ ¼ 1:

�
ð32Þ
This second problem is chosen in an attempt of mimicking the reaction zone behind a strong detonation,
where the combusting species are rapidly consumed by the chemical reactions. The exact solution in this case
is as follows:
uðx; tÞ ¼
expð�mtÞ; if x� at > 0;

expð�mxÞ; if x� at 6 0;

�
ð33Þ
hence allowing for a steady-state solution for at > 1 in the domain 0 < x < 1.
We solve the above problems with a second-order version of both the standard and the MinMax schemes.

Strang-splitting [20] is used to reduce the splitting error. The advection operator is discretized in conservation
form as
U �i ¼ Un
i �

k
h

F n
iþ1

2
� F n

i�1
2

� �
; ð34Þ
where a numerical flux function corresponding to the second-order Lax–Wendroff scheme is selected:
F iþ1
2
¼ a

Un
i þ U n

iþ1

2
� a2k

2h
ðU n

iþ1 � Un
i Þ:
Finally, the reaction operator is solved with a linearized trapezoidal method as
Unþ1
i ¼ U �i þ

k
2
SðU �i Þ

1� k
4
S0ðU �i Þ

:
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ig. 8. Comparison of MinMax first and second-order results for the IVP: Gaussian pulse at t ¼ 0:3; h ¼ 0:01, k=h ¼ 0:75.
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Fig. 10. Comparison of MinMax first and second-order results: IVBP at t ¼ 1:2; h ¼ 0:01, k=h ¼ 0:75.
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The structure of the MinMax algorithm is that described in Section 3.5, with the M and m extrapolation func-
tions given by (27) and (28).

For the IVP, a Gaussian pulse with r ¼ 0:1, centered in x0 ¼ 0:3, is propagated from time t ¼ 0 to time
t ¼ 0:3 with a ¼ 1. The stiffness parameter is m ¼ 1. Fig. 8 shows both first- and second-order MinMax solu-
tions, that are virtually indistinguishable from those obtained with the standard finite volume scheme for this
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problem. The result of a convergence study is reported in Fig. 9, where the L2 norm of the error is used. Sec-
ond-order accuracy is obtained with the MinMax scheme, as for the standard method.

The IBVP (29)–(32) with a ¼ 1 and m ¼ 10 is integrated in the 0 < x < 1 domain to time t ¼ 1:2, so as to
reach a steady-state condition in the considered domain. Fig. 10 shows the computed MinMax solutions, that
again overlap the standard scheme results. The L2 norm of the error, reported in Fig. 11, shows an effective
second-order convergence.

We can conclude that the second-order MinMax algorithm behaves exactly as the corresponding stan-
dard fractional-step, second-order finite volume method for the smooth problems considered in this
section.

5. The MinMax algorithm applied to the reactive Euler equations

We consider in this section the extension of the MinMax algorithm to the solution of the reactive Euler
equations. Moving from a scalar equation to a system of partial differential equations poses some additional
problems to the formulation of the algorithm that will be examined in the following sections.

5.1. The reactive Euler equations

The simplest description of a chemically reacting gas flow [23,16] assumes that the gas mixture is made only
of two chemical species, respectively, burnt gas and unburnt gas. The unburnt gas is converted to burnt gas via
a single irreversible reaction. The mixture state may be then represented by a single scalar variable, the mass
fraction of the unburnt gas z. With the further assumption that gases in the mixture may be considered as ideal
polytropic gases with equal ratio of specific heats c and specific gas constant R, the reactive Euler equations in
one dimension may be written as
ow

ot
þ ofðwÞ

ox
¼ sðwÞ ð35Þ
with
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w ¼

q

qu

Et

qz

8>>><
>>>:

9>>>=
>>>;
; f ¼

qu

qu2 þ P

uðEt þ P Þ
quz

8>>><
>>>:

9>>>=
>>>;
; s ¼

0

0

0

�KðT Þqz

8>>><
>>>:

9>>>=
>>>;
; ð36Þ
where q is the mixture density, u the mixture velocity, Et ¼ qeþ 1
2
qu2 the mixture total energy per unit volume,

e the mixture specific internal energy, P the pressure, K the chemical reaction rate, and T represents the tem-
perature. The two equations of state completing the model are
T ¼ P
qR

ð37Þ
and
e ¼ 1

c� 1

P
q
þ q0z ð38Þ
where q0 is the amount of heat per unit mass released in the chemical reaction.
The reaction rate of the irreversible chemical reaction, KðT Þ, is expressed in Arrhenius form as
KðT Þ ¼ A exp
�T A

T

� �
; ð39Þ
where the pre-exponential coefficient A and the activation temperature T A are empirical constants. When the
reaction source term is stiff, however, the reaction rate may be simplified by adopting the so-called ignition
temperature kinetic model, that is
KðT Þ ¼
m : T P T ign;

0 : T < T ign;

�
ð40Þ
where T ign is a threshold ignition temperature and m represents the inverse of the characteristic time of the
chemical reaction and determines the stiffness of the problem.

5.2. The standard fractional-step method

With the same fractional-step approach described for the scalar equation in Section 2 we approximate the
exact solution on the grid defined in (4) as:
wðx; tnþ1Þ � AnRnwðx; tnÞ: ð41Þ

As before, the operator Rn is defined as
Rnwðx; tnÞ ¼ w�ðx; tnþ1Þ; ð42Þ

where w�ðx; tnþ1Þ stands for the solution on a time step of the reaction problem:
dw�

dt ¼ sðwnÞ; tn 6 t 6 tnþ1;

w�ðx; tnÞ ¼ wn
0ðxÞ

(
ð43Þ
with wn
0ðxÞ derived from a piecewise constant or linear approximation of wðx; tnÞ, while the operator An is de-

fined as
Anw�ðx; tnþ1Þ ¼ w��ðx; tnþ1Þ; ð44Þ
where w��ðx; tnþ1Þ is the solution of the advection part of the problem on the time interval, that is
ow��

ot þ
ofðw��Þ

ox ¼ 0; tn 6 t 6 tnþ1;

w��ðx; tnþ1Þ ¼ w�0ðxÞ

(
ð45Þ
with w�0ðxÞ inferred from w�ðx; tnþ1Þ. With a standard cell-centered formulation, the discrete values of the con-
servative variable vector, Wn

i , approximate the cell averaging



L. Tosatto, L. Vigevano / Journal of Computational Physics 227 (2008) 2317–2343 2333
Wn
i ¼

1

h

Z xiþ1=2

xi�1=2

wðx; tnÞdx: ð46Þ
Considering the simple model (40) for the reaction constant, the reactive problem (43) has the following trivial
analytical solution:
q�i ¼ qn
i ;

ðquÞ�i ¼ ðquÞni ;
ðEtÞ�i ¼ ðEtÞni ;

ðqzÞ�i ¼
ðqzÞni ; if T n

i < T ign;

ðqzÞni expð�mkÞ; if T n
i P T ign:

� ð47Þ
The advection problem is solved numerically with the popular Roe’s scheme [24], extended to second-order
accuracy with a flux limiting approach, blending upwind and Lax–Wendroff schemes with a Van Leer limiter
[22] and using the entropy fix proposed by Harten and Hyman in [25].

The behavior of this standard method is tested on the example proposed in [16] for the same reactive Euler
system considered here. The example consists of a Chapman–Jouguet detonation moving with constant uni-
tary speed through the unburnt gas to the right of the domain. Setting c ¼ 1:4, R ¼ 1, q0 ¼ 1 and assigning the
following burnt gas values:
qb ¼ c; ub ¼ 0; P b ¼ 1; zb ¼ 0
it is straightforward to compute the von Neumann state past the shock wave:
qvN ¼
c

1� d
; uvN ¼ d; P vN ¼ 1þ cd; zvN ¼ 1;
where d ¼
ffiffiffiffiffiffiffiffiffiffi
2ðc�1Þ
cþ1

q
, and the unburnt gas values:
qu ¼
c

1þ d
; uu ¼ �d; P u ¼ 1� cd; zu ¼ 1
The resulting temperature of the unburnt gas, T u ¼ 0:215995, is only slightly lower than the assigned ignition
temperature, T ign ¼ 0:22.

The initial condition for the computation consists of the cell integral values of the analytical solution, the
front is placed at x ¼ �0:3. The same cell-integrated detonation structure is used for comparison with the
numerical experiments. It has to be noticed that a plot of the exact cell integral values will always smooth
the peak von Neumann values after the shock, the amount of smoothing being strongly influenced by the
width of the reaction zone, i.e. by the stiffness of the detonation itself, as can be observed in the presented
results.

Fig. 12 shows the result achieved with the standard method for the non-stiff case ðkm ¼ 0:1Þ: the peak values
after the shock are quite well represented and the propagation speed of the detonation is properly predicted.
At the intermediate value km ¼ 1 the numerical detonation speed is still correct, while the thinner reaction zone
is less well resolved (Fig. 13). Finally, increasing the value of km to 10 brings us to the stiff case, where the
numerical prediction (Fig. 14) shows a totally incorrect detonation propagating at the speed of one mesh cell
per time step, followed by a non-reacting shock. This behavior of the numerical solution is similar to that pre-
sented and analyzed for the scalar case.

5.3. The MinMax method for a system of equations

To show how to extend the MinMax method to a system of hyperbolic equations like (35), we will first con-
sider a very general approach in which the MinMax structure is applied to all the conservative variables. The
resulting algorithm will be very similar to what is done in the scalar case, except for the necessity of ordering
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Fig. 12. Standard fractional-step method (Roe + VanLeer + HH2), km ¼ 0:1 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density; (b) pressure;
and (c) temperature.
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Fig. 13. Standard fractional-step method (Roe + VanLeer + HH2), km ¼ 1 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density and (b) pressure.
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the variables inside the cell. This kind of approach will allow us to obtain the correct detonation structure for a
one-dimensional problem, but its extension to multi-dimensional flow may not be straightforward.

We start by introducing two further vectors of unknowns, W and W, that represent the maximum and min-
imum values of the conservative variables in every computational cell. Like in the scalar case, these further
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Fig. 14. Standard fractional-step method (Roe + VanLeer + HH2), km ¼ 10 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density and (b)
pressure.
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unknowns, along with the vector of the average values W, allow to reconstruct the solution in such a way that
a discontinuity for any of the variables may be present inside the cell.

Specifically, defining wnðniÞ as a continuous approximation of the solution vector inside the cell i at time n

(see Eqs. (14)–(16)), we impose

(1) Consistency with the average
Fig. 15
possib
Z 1

0

wnðniÞdni ¼Wn
i :
(2) Each pth component of wnðniÞ can assume only two values
wn
pðniÞ ¼ W n

p;i _ wn
pðniÞ ¼ W n

p;i 8ni 2 ½0; 1�;
where W n
p;i and W n

p;i are the pth components of Wn
i and Wn

i .

The portion of cell occupied by the maximum value is also defined componentwise as
cp ¼
W p � W p

W p � W p
;

where the time level n and cell index i are not indicated for sake of clarity.
While solving the scalar problem, different choices of the function unðniÞ are possible (see Eqs. (17)–(19)), all

of which are equivalent to the solution procedure. This property no longer holds when solving a system of
. Two possible ordering for the variables T (red) and Z (green) in the solution of a detonation wave. Only one of the two
ilities presents a region with both high temperature and reactive mixture that is necessary for combustion to occur (dashed region).
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equations in which the MinMax reconstruction is applied to more than one variable. As a simple example,
Fig. 15 shows two cell reconstructions for the variables temperature and mass fraction: only one of these pos-
sible combinations (Fig. 15b) presents a region with high temperature and high mixture fraction that is nec-
essary to obtain combustion.

This non-uniqueness of the reconstruction requires an ordering of the maximum and minimum values
within the cell. We choose to impose, componentwise, the maximum value of the solution in the left part
of the cell if the spatial gradient of the solution is negative, or, conversely, in the right part of the cell if
the gradient is positive, namely,
Fig. 1
differe
wn
pðniÞ ¼

W n
p;i ni 6 cn

p;i;

W n
p;i ni > cn

p;i;

(
if W n

p;iþ1 � W n
p;i�1

� �
6 0;

wn
pðniÞ ¼

W n
p;i ni 6 1� cn

p;i

� �
;

W n
p;i ni > 1� cn

p;i

� �
;

8<
: if W n

p;iþ1 � W n
p;i�1

� �
> 0:

ð48Þ
Eq. (48) provides a unique way to define the solution, so that a structure like the one in Fig. 16 is obtained.
This identifies a piecewise constant solution inside the cell, made of five regions. We will refer to the solution
values in each region as wðqÞ, q ¼ 1; . . . ; 5, and to the corresponding portion of cell occupied by the region as
cðqÞ.

Once the internal structure of the cell has been reconstructed it is easy to solve the reaction operator by
solving an ODE problem for each of the subparts:
dw�

dt ¼ sðw�Þ; tn 6 t 6 tnþ1;w
�ðx; tnÞ ¼ wðqÞ




with q ¼ 1; . . . ; 5.

From the solution of these differential problems the function w�ðni; tnþ1Þ (i.e. the numerical solution inside
the cell after the reactive step) is obtained. It is then possible to adjourn for each pth component of the solution
the maximum, minimum and average values of the ith cell as
W �
p;i ¼ max

06ni61
w�pðni; tnþ1Þ;

W �
p;i ¼ min

06ni61
w�pðni; tnþ1Þ;

W �
p;i ¼

Z 1

0

w�pðni; tnþ1Þdni:

ð49Þ
6. The internal structure for the MinMax method in conservative variables identifies five regions in which the reaction occurs
ntly.
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Fig. 17. MinMax method, km ¼ 0:1 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density; (b) pressure and (c) temperature.
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Fig. 18. MinMax method, km ¼ 10 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density and (b) pressure.
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The advection problem that follows is solved with the same Roe’s scheme, based only on the average values
W�, as for the standard finite volume method. Finally, the updated maximum and minimum values are
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Fig. 19. MinMax method, km ¼ 100 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density and (b) pressure.
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Fig. 20. Density for the stiff Arrhenius case at t ¼ 1:8, with h ¼ 0:01, k ¼ 0:005. (a) Standard method. (b) MinMax method.
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obtained by applying the extrapolation functions M and m (see Eqs. (27), (28)) to each component of the solu-
tion vector.

Figs. 17 and 18 show the results obtained by the MinMax method for the non-stiff and stiff conditions of
the Chapman–Jouguet detonation described in the preceding section. They may be compared to Figs. 12 and
14 where the solutions obtained with the standard fractional-step method were reported. The MinMax solu-
tion retains the same accuracy as the standard method solution in describing the reaction zone for the non-stiff
case. In the stiff case ðkm ¼ 10Þ the proposed scheme cannot resolve the reaction zone but allows us to obtain
the correct propagation velocity of the detonation. In addition, increasing the value of km to 100 (Fig. 19) does
not prevent the MinMax solution from recovering the correct propagation speed.

The present method has also been tested with a second example, taken again from [16], in which the Arrhe-
nius law (39) is considered. In this case the reaction problem is solved with an implicit trapezoidal method with
subiterations. The unburnt gas state is given by
qu ¼ 1; uu ¼ 0; P u ¼ 1; zu ¼ 1
with gas properties c ¼ 1:4, R ¼ 1, q0 ¼ 25. The detonation is initially located at x ¼ 10 and travels with speed
uCJ ¼ 7:12470242. The activation temperature is set to the value T A ¼ 25, while the pre-exponential coefficient
is given the value A ¼ 16418 to impose a stiff problem on a grid with spacing h ¼ 0:01. A comparison of the
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Fig. 21. Pressure for the stiff Arrhenius case at t ¼ 1:8, with h ¼ 0:01, k ¼ 0:005: (a) standard method and (b) MinMax method.
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Fig. 22. MinMax–TZ method, km ¼ 100 at t ¼ 1, with h ¼ 0:01, k ¼ 0:005: (a) density and (b) pressure.
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standard and MinMax method results is presented in Figs. 20 and 21 and confirms the capability of the present
approach to correctly approximate the detonation speed in under-resolved cases.

5.4. Simplified formulations of the MinMax method

In the previous section, it has been shown that the proposed method can be successfully applied to a system
of equations, at the expense of an increase in memory requirements and computational cost. In fact, for the
reactive Euler system considered in this work, the reaction step requires the separate solution of five ODE
problems (43) in each cell. However, the most relevant difficulty of the MinMax algorithm, when applied
to the whole vector of unknowns, is related to its multi-dimensional extension.

The spatial ordering, needed to select a unique MinMax reconstruction within the cell, appears in fact much
more complicated for two- or three-dimensional problems. We hence look at possible simplifications of the
method to reduce the number of unknowns for which the MinMax reconstruction is required. The expression
of the source vector sðwÞ suggests immediately to consider a MinMax structure only for the variables temper-
ature T and mass fraction per unit volume Z ¼ qz. The resulting algorithm, labelled MinMax–TZ, follows the
same steps described in the preceding section, with the difference that only the minimum and maximum values
T , T and Z, Z are defined and ordered within the cell, giving rise to a three-region structure. The method is
tested with the simplified rate law (40) and the unitary speed detonation described in Section 5.2. For the stiff
case, the results achieved with the simplified MinMax–TZ algorithm are very similar to those of the original
MinMax scheme (Fig. 22).

A further simplification is sought, in order to reduce the number of MinMax variables to one: a MinMax–T

algorithm is proposed, in which only the temperature is considered to possess a MinMax structure. This
hypothesis brings the method closer to those proposed in [14,15,17,18]: however, instead of modifying the igni-
tion temperature, the present method enriches the representation of the temperature variable considering the T
and T values within each cell. Also the MinMax–T algorithm yields very similar results to those of the other
schemes for the stiff conditions (Fig. 23), thus suggesting a straightforward extension of the MinMax method
to multi-dimensional problems.
6. Conclusions

A modification to standard fractional step, finite volume methods has been proposed to cure the problem
exhibited by these methods when dealing with advection/reaction scalar equations and equation systems with
stiff source terms. The calculation of an incorrect propagation speed of the discontinuities is avoided by resort-
ing to a two-value reconstruction of the unknowns within each cell, to prevent the reaction operator from
influencing the propagation speed itself. A key point of the proposed numerical procedure is the extrapolation
of the two-value reconstruction after the advection step, in which the generation of new maxima or minima of
the solution is avoided.

In the scalar case, the resulting algorithm, termed MinMax, has been proved to retain the formal accuracy
of the related finite volume approach and presents three main advantages: (i) it is conceptually very simple; (ii)
it may be used for both stiff and non-stiff problems; and (iii) it allows a straightforward extension to two-
dimensional problems.

The MinMax approach may be extended to hyperbolic equation systems (i.e. the reactive Euler equations)
by applying the same procedure to each of the scalar components of the vector of unknowns. Due to the num-
ber of variables possessing a MinMax structure, the algorithm gives rise to a complex distribution of the
unknowns within the cell. However, for one-dimensional flows a simple ordering of the minimum and max-
imum values of the conservative variables in the cell allows us to achieve the correct numerical propagation
speed for Chapman–Jouguet detonations.

Two simplified versions of the scheme have also been proposed, in which only a few of the variables possess
a MinMax structure. Both the MinMax–TZ and MinMax–T algorithms yield results comparable to those of
the original scheme for one-dimensional flows, thus representing the background for the future extension of
the method to multi-dimensional problems.
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Appendix

The aim of this appendix is to demonstrate that the MinMax method can produce second-order accurate
solutions of the advection/reaction Eq. (1). We begin by considering the following standard finite volume
method:
W �
i ¼ R

k
2W n

i ;

W ��
i ¼ AkðW �; iÞ;

W nþ1
i ¼ R

k
2W ��

i ;

ð50Þ
where the symbol W is used for the numerical solution of the standard finite volume method, to distinguish it
from the MinMax solution defined below. The operator-splitting method (50) takes the name of Strang-split-

ting and it has been proved to be second-order accurate when the truncation error of the discrete reaction and
advection operators R and A is at least second-order [20]. It has been extensively tested in [4,21] and in the stiff
case shows exactly the same spurious propagation of the initial discontinuity as featured by the standard first-
order method. We then consider the second-order version of the MinMax algorithm, applied to the same
advection/reaction equation:
U �i ¼ R
k
2U n

i ;

U �i ¼ R
k
2U n

i ;

c�i ¼ cn
i ;

U �i ¼ U �i c
�
i þ U �i ð1� c�i Þ;

U ��i ¼ AkðU �; iÞ;

U� ¼ fU �i ;U �iþ1;U
�
i�1;U

�
i ;U

�
iþ1;U

�
i�1g;

U ��i ¼ MðU�;U ��i Þ;
U ��i ¼ mðU�;U ��i Þ;

c��i ¼
U ��i � U ��i
U ��i � U ��i

;

U nþ1
i ¼ R

k
2U ��i ;

U nþ1
i ¼ R

k
2U ��i ;

cnþ1
i ¼ c��i ;

U nþ1
i ¼ U nþ1

i cnþ1
i þ Unþ1

i ð1� cnþ1
i Þ:

ð51Þ
We will now demonstrate that Unþ1 ¼ W nþ1 þOðh2Þ. Recalling that the Strang-splitting method is second-or-
der accurate, this will also prove that the MinMax method is second-order accurate. The basic assumptions of
this demonstration are: (i) the functions M and m satisfy condition (25); (ii) the initial conditions of the two
methods are almost identical (i.e. U n ¼ W n þOðh2Þ). We will also suppose that the exact solution is smooth in
order to perform a Taylor expansion of the unknowns.

We begin by defining DR as the difference between the two methods after the first reactive step:
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DR ¼ W �
i � U �i ¼ R

k
2W n

i � c�i R
k
2U n

i Þ þ ð1� c�i ÞR
k
2Un

i

� �
: ð52Þ
Introducing DU and DU as the difference between the average and the maximum (resp. minimum) values:
DU ¼ U � U ;

DU ¼ U � U
and dropping suffix i for simplicity we can rewrite (52) as
DR ¼ R
k
2W n � c�R

k
2ðU n þ DU nÞ � ð1� c�ÞRk

2ðU n � DU nÞ: ð53Þ

Considering that the quantity c is left unvaried by the reactive operator ðc� ¼ cnÞ, we can also drop the super-
scripts n and * as all the variables in (53) are evaluated at the same time level:
DR ¼ R
k
2W � cR

k
2ðU þ DUÞ � ð1� cÞRk

2ðU � DUÞ:

Assuming that the source term SðuÞ in (1) is smooth, we may perform a first-order Taylor expansion of R

k
2

around U:
DR ¼ R
k
2W � c R

k
2U þ oR

k
2

oU

�����
U

DU þOðDU 2Þ
 !

� ð1� cÞ R
k
2U � oR

k
2

oU

�����
U

DU þO DU 2
� � !

;

where oR
k
2

oU is intended as the variation of the ODE solution with respect to a small perturbation of the initial
condition.

If we now consider condition (25), then U and U uniformly tend to the average U, hence OðDU 2Þ and
OðDU 2Þ may be substituted by Oðh2Þ. We can write DR as
DR ¼ R
k
2W �R

k
2U þ�oR

k
2

oU

�����
U

ðcDU � ð1� cÞDUÞ þOðh2Þ:
However, cDU � ð1� cÞDU is null, as can be easily checked putting DU and DU in the definition of average
operator (21). Furthermore, since Un ¼ W n þOðh2Þ, we have
R
k
2U ¼ R

k
2W þ oR

k
2

oU

�����
W

Oðh2Þ;
so that the difference between the standard finite volume method and the MinMax method after the first reac-
tion step is
DR ¼ Oðh2Þ:

When solving the homogeneous part of the problem only the average is considered, so that we have
DA ¼ W ��
i � U ��i ¼ AkðW �; iÞ �AkðU �; iÞ ¼ AkðW �; iÞ �AkðW � þOðh2Þ; iÞ ¼ Oðh2Þ:
During the second reactive step we can estimate the difference between the two methods as previously de-
scribed. We finally obtain
W nþ1
i � U nþ1

i ¼ Oðh2Þ;
i.e. the MinMax approximation, applied to a smooth solution, behaves as the finite volume method, introduc-
ing an additional error of order Oðh2Þ that does not downgrade the formal accuracy of the scheme.
References

[1] P. Colella, A. Majda, V. Roytburd, Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput. 7
(1986) 1059–1079.

[2] R. Pember, Numerical methods for hyperbolic conservation laws with stiff relaxation, i. spurious solutions, SIAM J. Appl. Math. 53
(1993) 1293–1330.



L. Tosatto, L. Vigevano / Journal of Computational Physics 227 (2008) 2317–2343 2343
[3] M. Ben-Artzi, The generalized Riemann problem for reactive flows, J. Comput. Phys. 81 (1989) 70–101.
[4] R. LeVeque, H. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys. 86

(1990) 187–210.
[5] D. Griffiths, A. Stuart, H. Yee, Numerical wave propagation in an advection equation with a nonlinear source term, SIAM J. Numer.

Anal. 29 (1992) 1244–1260.
[6] D. Nguyen, F. Gibou, R. Fedkiw, A fully conservative ghost fluid method & stiff detonation waves, in: Proceedings of the 12th

International Detonation Symposium, S. Diego, CA, 2002.
[7] R. Jeltsch, P. Klingenstein, Error estimators for the position of discontinuities in hyperbolic conservation laws with source term which

are solved using operator splitting, Comput. Vis. Sci. 1 (1999) 231–249.
[8] B. Bihari, D. Schwendeman, Multiresolution schemes for the reactive Euler equations, J. Comput. Phys. 154 (1999) 197–230.
[9] A. Bourlioux, A. Majda, V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl.

Math. 51 (1991) 303–343.
[10] A. Chorin, Random choice solution of hyperbolic systems, J. Comput. Phys. 22 (1976) 517–533.
[11] A. Chorin, Random choice methods with applications for reacting gas flows, J. Comput. Phys. 25 (1977) 253–272.
[12] A. Majda, V. Roytburd, Numerical study of the mechanisms for initiation of reacting shock waves, SIAM J. Sci. Stat. Comput. 11

(1990) 950–974.
[13] B. Engquist, B. Sjogreen, Robust Difference Approximations of Stiff Inviscid Detonation Waves, Technical Report, 1991, CAM 91-

03, UCLA.
[14] V. Ton, Improved shock-capturing methods for multicomponent and reacting flows, J. Comput. Phys. 128 (1996) 237–253.
[15] A. Berkenbosch, E. Kaasschieter, R. Klein, Detonation capturing for stiff combustion chemistry, Combust. Theory Model. 2 (1998)

313–348.
[16] C. Helzel, R. LeVeque, G. Warneke, A modified fractional step method for the accurate approximation of detonation waves, SIAM J.

Sci. Stat. Comput. 22 (1999) 1489–1510.
[17] W. Bao, S. Jin, The random projection method for hyperbolic conservation laws with stiff reaction terms, J. Comput. Phys. 163 (2000)

216–248.
[18] W. Bao, S. Jin, The random projection method for stiff detonation capturing, J. Sci. Comput. 23 (2001) 1000–1025.
[19] A. Kurganov, An accurate deterministic projection method for hyperbolic systems with stiff source terms, in: Proceedings of the 9th

International Conference Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2003.
[20] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.
[21] L. Tosatto, Soluzione numerica di equazioni di advezione e reazione con termine di sorgente stiff: applicazione alle onde di

detonazione, Technical Report, Master Thesis, Politecnico di Milano, 2005 (in Italian).
[22] R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992.
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